Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy
نویسندگان
چکیده
C4 plants have a biochemical carbon-concentrating mechanism that increases CO2 concentration around Rubisco in the bundle sheath. Under low light, the activity of the carbon-concentrating mechanism generally decreases, associated with an increase in leakiness (ϕ), the ratio of CO2 retrodiffusing from the bundle sheath relative to C4 carboxylation. This increase in ϕ had been theoretically associated with a decrease in biochemical operating efficiency (expressed as ATP cost of gross assimilation, ATP/GA) under low light and, because a proportion of canopy photosynthesis is carried out by shaded leaves, potential productivity losses at field scale. Maize plants were grown under light regimes representing the cycle that leaves undergo in the canopy, whereby younger leaves initially developed under high light and were then re-acclimated to low light (600 to 100 μE·m(-2)·s(-1) photosynthetically active radiation) for 3 weeks. Following re-acclimation, leaves reduced rates of light-respiration and reached a status of lower ϕ, effectively optimizing the limited ATP resources available under low photosynthetically active radiation. Direct estimates of respiration in the light, and ATP production rate, allowed an empirical estimate of ATP production rate relative to gross assimilation to be derived. These values were compared to modelled ATP/GA which was predicted using leakiness as the sole proxy for ATP/GA, and, using a novel comprehensive biochemical model, showing that irrespective of whether leaves are acclimated to very low or high light intensity, the biochemical efficiency of the C4 cycle does not decrease at low photosynthetically active radiation.
منابع مشابه
Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?
The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been sys...
متن کاملThe relationships between carbon isotope discrimination and photosynthesis and rice yield under shading
The measurement of carbon isotope discrimination (∆) provides an integrated insight into theresponse of plants to environmental change. To investigate the potential use of ∆ for identifyingshade tolerance in rice, five rice varieties were selected and artificially shaded (53% lightreduction) during the grain-filling period in 2010 and 2011, in Sichuan, China. Shadingtreatment had a significant ...
متن کاملBundle sheath leakiness and light limitation during C4 leaf and canopy CO2 uptake.
Perennial species with the C(4) pathway hold promise for biomass-based energy sources. We have explored the extent that CO(2) uptake of such species may be limited by light in a temperate climate. One energetic cost of the C(4) pathway is the leakiness () of bundle sheath tissues, whereby a variable proportion of the CO(2), concentrated in bundle sheath cells, retrodiffuses back to the mesophyl...
متن کاملPhotosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions
In this study we assessed the ability of the C4 plant maize to perform long-term photosynthetic acclimation in an artificial light quality system previously used for analyzing short-term and long-term acclimation responses (LTR) in C3 plants. We aimed to test if this light system could be used as a tool for analyzing redox-regulated acclimation processes in maize seedlings. Photosynthetic param...
متن کاملShading Impact on Qualitative Characteristics and Chlorophyll Content of Cut Rose (Rosa hybrida cv. Avalanche)
Light intensity is considered a limiting factor in greenhouse rose production. The main aim of this experiment was to evaluate the effect of shading treatments (0, 25, 50, and 65% shading) on quality and chlorophyll content of cut rose (Rosa hybrida cv. Avalanche), under greenhouse conditions. The experiment was planned in randomized completely block design with four replications. All shoots we...
متن کامل